Betel palm, Areca -Aguesa catechu L.
Homeland – Tropical Asia; how reliably wild is unknown. It is cultivated in Southeast Asia throughout the South Asian archipelago, in Africa (Socotra, Madagascar, Zanzibar, etc.) and the tropical zone of Brazil.
Fruits are egg-shaped (6-7 cm long) with a fibrous fruit within, contain one seed. The seed has a conical shape with a blunt apex, up to 3 cm high and within 2 cm wide, with a yellowish-gray shell with a characteristic mesh pattern. The seed mass consists of a horn-shaped white endosperm, mottled with brown remnants of the penetrating tissue of the seed coat.
Seeds (Semen Agesae) contain up to 0.5% of the main alkaloid arecoline and, in addition, within 0.1% of a mixture of other alkaloids (arecaidine, guvacine and kuvakolin), which do not have antihelminthic activity. Arecoline is a methyl ester of methyl-tetrahydrocyridinecarboxylic acid. It is a colorless, oily, alkaline liquid that boils at 209°C and distills with water vapor.
Arecoline is used in the form of a well-crystallized hydrobromide salt in veterinary medicine for tapeworms; poisonous (list A). In tropical states, ground nuts are used for the same purpose (for elephants and other animals).
Areca seeds are part of the betel chewing mass, widely used by the population of Southeast Asia (instead of smoking tobacco). For the preparation of “chewing gum”, a fresh betel leaf Piper betle L. is taken, thinly sliced areca seeds, tannic extract – catechu or ginger and lime are placed on it. Everything is wrapped in a leaf, put on the cheek and chewed slowly. With prolonged use, the lips turn bright red, and the teeth darken. The action is stimulating, narcotic and antihelminthic. Tanning extracts and red paint are also prepared from nuts.
The plant contains piperidine and pyridine alkaloids.
PLANTS CONTAINING ALKALOIDS
Alkaloids are called natural nitrogen-containing compounds of the main nature, formed in plants. Groups of proteinogenic amines (for example, tyramine) and betaines (stakhidrin, trigonelline, etc.) adjoin the alkaloids, which are considered as transitional compounds from the simplest nitrogen-containing compounds (methylamine, trimethylamines, etc.) to the alkaloids proper.
Of natural pharmacologically active substances, alkaloids are the main group from which modern medicine draws the largest number of highly effective drugs.
According to world literature, by the end of the past decade, the number of alkaloids isolated from the higher plants of the Earth’s flora exceeded 5000. According to modern concepts, alkaloid-bearing plants make up 10% of the entire world flora. The families Equisetaceae, Lycopodiaceae, Ephedraceae, Liliaceae, Amaryllidaceae, Dioscoreaceae, Chenopodiaceae, Nymphaeaceae, Ranunculaceae, Berberidaceae, Menispermaceae, Papaveraceae, Fabaceae, Rutaceae, Cactaceae, Punicaceae contain the largest number of alkaloid-bearing genera and species. Loganiaceae, Apocynaceae, Borraginaceae, Solanaceae, Rubiaceae.
Usually plants that are phylogenetically close contain alkaloids that are very similar in structure, thus forming a natural group of genera. For example, plants of the genera Atropa, Datura, Hyoscyamys, Scopolia, Physochlaina, Duboisia. Mandragora (all from the same Solananeae family) contain a well-defined group of tropane alkaloids. This far-reaching pattern, however, has exceptions that have not yet been explained. So, for example, caffeine is found in plants that are not systematically related to each other: tea (Theaceae), coffee (Rubiaceae), cocoa (Sterculiaceae), mate (Aquifoliaceae), guarana (Sapindaceae), erodium (Geraniaceae). Along with this, there are cases when their 2 very close systematically species, one is rich in alkaloids, and the other either does not contain them at all, or contains alkaloids of a different structure.
Alkaloids can be found throughout the plant, or they can be formed and accumulated only in one or more specific organs. The plant traditionally contains not one, but several alkaloids. In individual plants, there may be 20 or more of them (cinchona, hypnotic poppy, etc.), and they may be similar in structure or belong to different chemical groups. In the sum of alkaloids, 1–3 traditionally predominate quantitatively (the main alkaloids). In plants, alkaloids are dissolved in the cell sap of the main parenchyma, phloem, and other tissues in the form of salts, mainly organic acids (malic, succinic, citric, oxalic, fumaric, quinic, etc.); of mineral acids, phosphoric acid is more often involved.
The quantitative content of alkaloids is, in principle, a species characteristic, and it varies over a very wide range. For example, in black henbane they are only 0.05-0.1%, and up to 15% accumulate in the cinchona bark. In the process of ontogenetic development of plants, their alkaloid content undergoes quantitative and sometimes qualitative changes, and each species has its own regularities.
The content of alkaloids in plants is influenced by their geographical location and various factors (air and soil temperature, precipitation, duration and intensity of sunlight, shading, height above sea level, etc.), as well as human impact in the case of transferring the plant to cultivation or its acclimatization. The largest number of alkaloid-bearing species, moreover, with a high content of alkaloids, is common in subtropical and tropical states with a humid climate. Alkaloids of different structure are confined to certain latitudes, and in connection with this, their pharmacological activity changes.
There is no consensus on the biological role and causes of the formation of alkaloids in plants. The main hypotheses proposed at different times interpret alkaloids as: 1) waste products of the vital activity of a plant organism; 2) spare substances; 3) protective substances; 4) active substances necessary for biosynthesis. The latter hypothesis is currently considered by most scientists to be the most general one, which, however, does not exclude other biological functions of alkaloids.
The exceptional diversity in the structure of alkaloid molecules does not allow us to imagine a single way of their formation in plants. Their biosynthesis proceeds according to specific schemes with the most complex chemical transformations (ring opening and closing, oxidation, deamination, ring condensation, etc.) through many intermediate products. Some alkaloids begin biogenesis from amino acids, others from acetic acid (in other words, from carbohydrates).
The modern classification of alkaloids is based on the nature of the heterocycles included in their molecules, with the release into a separate group of alkaloids with an aliphatic structure and with nitrogen in the side chain.
1. Alkaloids with an aliphatic structure or with nitrogen in the side chain;
2. Pyrrolizidine alkaloids.
3. Piperidine and pyridine alkaloids.
4. Alkaloids with condensed and pyrrolidone and piperidine rings.
5. Quinoline alkaloids.
6. Quinazoline alkaloids.
7. Isoquinoline alkaloids.
8. Indole alkaloids.
9. Alkaloid of the imidazole group.
10. Purine alkaloids.
11. Diterpene alkaloids.
12. Steroid alkaloids (glycoalkaloids).
13. Alkaloids of unknown structure.
In conclusion of this brief review, it should be pointed out that most alkaloids are highly active substances with selective pharmacological action. The selectivity of the action of alkaloids determines their widespread use for medicinal purposes. The main forms are extraction products (tinctures, extracts, novogalenic preparations, etc.) and pure alkaloids isolated from plants, converted into soluble salts of certain inorganic and organic acids.